Tag: data model knowledge

Technology - Why Business Intelligence (BI) needs a Semantic Data Model

Technology – Why Business Intelligence (BI) needs a Semantic Data Model

A semantic data model is a method of organizing and representing corporate data that reflects the meaning and relationships among data items. This method of organizing data helps end users access data autonomously using familiar business terms such as revenue, product, or customer via the BI (business intelligence) and other analytics tools. The use of a semantic model offers a consolidated, unified view of data across the business allowing end-users to obtain valuable insights quickly from large, complex, and diverse data sets. What is the purpose of semantic data modeling in BI and data virtualization? A semantic data model sits

Continue reading

Data Modeling – Column Data Classification

Column Data Classification When analyzing individual column data, at its most foundational level, column data can be classified by their fundamental use/characteristics.  Granted, when you start rolling up the structure into multiple columns, table structure and table relationship, then other classifications/behaviors, such as keys (primary and foreign), indexes, and distribution come into play.  However, many times when working with existing data sets it is essential to understand the nature the existing data to begin the modeling and information governance process. Column Data Classification Generally, individual columns can be classified into the classifications: Identifier — A column/field which is unique to

Continue reading

What is a Common Data Model (CDM)?

What is a Common Data Model (CDM)? A Common Data Model (CDM) is a share data structure designed to provide well-formed and standardized data structures within an industry (e.g. medical, Insurance, etc.) or business channel (e.g. Human resource management, Asset Management, etc.), which can be applied to provide organizations a consistent unified view of business information.   These common models can be leveraged as accelerators by organizations form the foundation for their information, including SOA interchanges, Mashup, data vitalization, Enterprise Data Model (EDM), business intelligence (BI), and/or to standardize their data models to improve meta data management and data integration practices.

Continue reading
%%footer%%