If we consider Materialized Views (MV) in their simplest form, as a point in time stored query result, then materialized views serve two primary purposes Performance Optimization and Semantics Simplification.
Performance Optimization
There are several ways in which materialized views can improve performance:
- Reduce Database Workloads: materialized views can reduce database workloads by pre-assembling frequently used queries, eliminating the repetitive execution of joins, aggregations, and filtering.
- Facilitate Database Optimizers: in some databases can be partitioning and indexing, which are considered by database optimizers. Also, in some databases in which more than one materialized view has been applied to a table, the database optimizer will consider all the associated materialized views when optimizing queries.
- Reduced Network Workloads: by the use of database replication and/or mass deployment techniques to materialized views, they can be distributed to more local proximity to the consumers, thereby reducing the data volume across the network and providing business continuation/disaster recovery capabilities, should the primary site become temporarily unavailable.
- Precalculation and/or Preaggregation: Performing calculation and aggregation of information upon creation of a materialized view, eliminates the need to perform these functions on an on-demand basis as various consumers submit requests.
- Data Subsets: by applying filters to eliminate unnecessary data (e.g., history data no longer in common reporting use) or unnecessary data attributes (e.g., unused columns or columns intended for other information purposes), the impact of filter for these items is reduced and is effectively eliminated for consumers of the materialized view.
Semantics Simplification
Materialized views can be used to simplify the semantics provided to inform consumers with Ad hoc capabilities and/or to simplify the construction of reporting and analytics objects. Depending on the database and/or integration tools in use to create them, materialized views can simplify the consumer experience by:
- Reduce or Eliminate Join Coding: When constructed materialized views can perform the joins and populate the materialized view with the value results from the join table, eliminating the need for the consumer to perform this function as an ad hoc user or in the semantics of reporting and analytics tools.
- Pre-application of Business Rules: When constructed, materialized views can apply business rules to facilitate queries by adding indicator flags and pre-applying special business logic to data and populating the materialized view with the value results, thus, eliminating the need for the consumer to perform this function as an ad hoc user or in the semantics of reporting and analytics tools.
- Precalculation and/or Pre-aggregation: Performing calculation and aggregation of information upon creation of a materialized view allow the consumer to use the results without the need to build the calculations and/or aggregations into the ad hoc query or in the semantics of reporting and analytics tools. This also helps to ensure information accuracy and consistency.
- Data Subsets: By prefiltering the data during the creation of the view, unnecessary or unused data and columns are not available to consumers and do not need to filter out of ad hoc queries or in the semantics of reporting and analytics tools